Better short-seed quantum-proof extractors

نویسندگان

  • Avraham Ben-Aroya
  • Amnon Ta-Shma
چکیده

We construct a strong extractor against quantum storage that works for every min-entropy k, has logarithmic seed length, and outputs Ω(k) bits, provided that the quantum adversary has at most βk qubits of memory, for any β < 1 2 . The construction works by first condensing the source (with minimal entropy-loss) and then applying an extractor that works well against quantum adversaries when the source is close to uniform. We also obtain an improved construction of a strong quantum-proof extractor in the high min-entropy regime. Specifically, we construct an extractor that uses a logarithmic seed length and extracts Ω(n) bits from any source over {0, 1}n, provided that the min-entropy of the source conditioned on the quantum adversary’s state is at least (1− β)n, for any β < 1 2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum-Proof Extractors: Optimal up to Constant Factors

We give the first construction of a family of quantum-proof extractors that has optimal seed length dependence O(log(n/ǫ)) on the input length n and error ǫ. Our extractors support any min-entropy k = Ω(log n+ log(1/ǫ)) and extract m = (1− α)k bits that are ǫ-close to uniform, for any desired constant α > 0. Previous constructions had a quadratically worse seed length or were restricted to very...

متن کامل

Better short-seed extractors against quantum knowledge

We construct a strong extractor against quantum storage that works for every min-entropy k, has logarithmic seed length, and outputs Ω(k) bits, provided that the quantum adversary has at most βk qubits of memory, for any β < 12 . Previous constructions required poly-logarithmic seed length to output such a fraction of the entropy and, in addition, required super-logarithmic seed length for smal...

متن کامل

Semidefinite Programs for Randomness Extractors

Randomness extractors are an important building block for classical and quantum cryptography. However, for many applications it is crucial that the extractors are quantum-proof, i.e., that they work even in the presence of quantum adversaries. In general, quantum-proof extractors are poorly understood and we would like to argue that in the same way as Bell inequalities (multi prover games) and ...

متن کامل

Quantum-Proof Multi-Source Randomness Extractors in the Markov Model

Randomness extractors, widely used in classical and quantum cryptography and other fields of computer science, e.g., derandomization, are functions which generate almost uniform randomness from weak sources of randomness. In the quantum setting one must take into account the quantum side information held by an adversary which might be used to break the security of the extractor. In the case of ...

متن کامل

Recent Advances in Complexity Theory

We give new constructions of randomness extractors and lossless condensers that are optimal to within constant factors in both the seed length and the output length. For extractors, thismatches the parameters of the current best known construction [LRV03]; for lossless condensers,the previous best constructions achieved optimality to within a constant factor in one parameteronly at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 419  شماره 

صفحات  -

تاریخ انتشار 2012